Methods for Plant Data - Based Process Modeling in Soft - Sensor Development
نویسندگان
چکیده
There has been an increased use of soft-sensors in process industry in recent years. These soft-sensors are computer programs that are used as a relatively cheap alternative to hardware sensors. Since process variables, which are concerned with final product quality, cannot always be measured by hardware sensors, designing the appropriate soft-sensor can be an interesting solution. Additionally, a soft-sensor can be used as a backup sensor, when the hardware sensor is in fault or removed due to maintenance or replacement. Soft-sensor is based on the mathematical model of the process. Since industrial processes are generally quite complex, a theoretical modeling approach is often impractical, expensive or sometimes even impossible. Therefore, process model building is based on measured data. This approach significantly gets complicated if only plant data, taken from the process database, are available. In this paper the most popular methods for plant data-based modeling that appeared in the last two decades are summarized and briefly explained. Apart from giving a short survey of the most important papers, tips about choosing the appropriate methodology for process model building are also provided.
منابع مشابه
Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملSubmitting an automation method for detection cavitations in hydro turbines considering sensitivity parameters (Sefidroud hydroelectric power plant dam)
In this research, submitting a method for evaluation of detection cavitation specifications and also automation of cavitation threshold has been investigated. The case study was based on Kaplan hydro turbine data located on Tarik hydropower plant at Sefidroud dam. The foundation of method was employment MATLAB program, sensor classification sensor locations and cavitation sensitivity. For train...
متن کاملApplication of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters
The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...
متن کاملModeling of Riyadh Sewage Treatment Plant: 1-Model Development, Verification and Simulation
In Saudi Arabia, the Riyadh Sewage Treatment Plant (RSTP) uses the activated sludge technology as the secondary treatment process for sewage. Due to the complex nature of the process, a rather simplified, yet practical, steady state model that captures the most important features of the RSTP was developed. Actual operating and design conditions were obtained from RSTP data bank. The monthly ave...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012